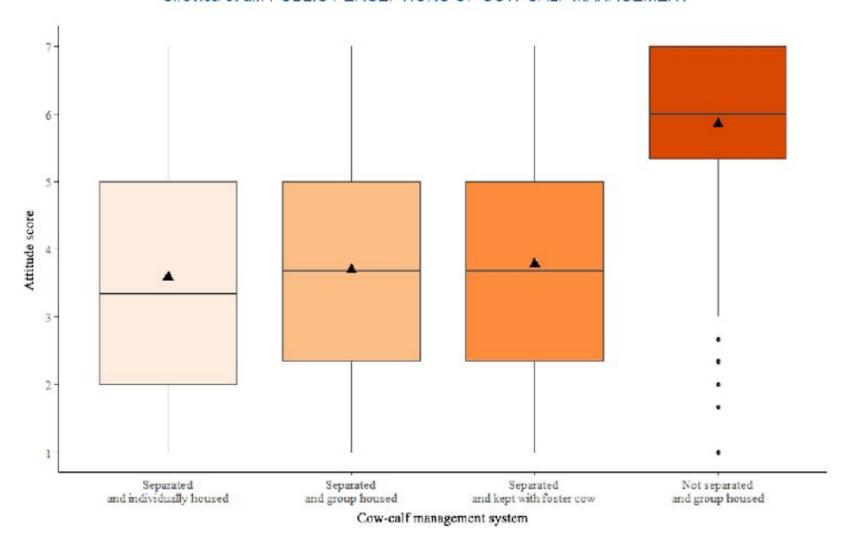


Cow calf separation on dairies – Summary of current evidence

Peter Plate, Royal Veterinary College, Hertfordshire pplate@rvc.ac.uk

Outline

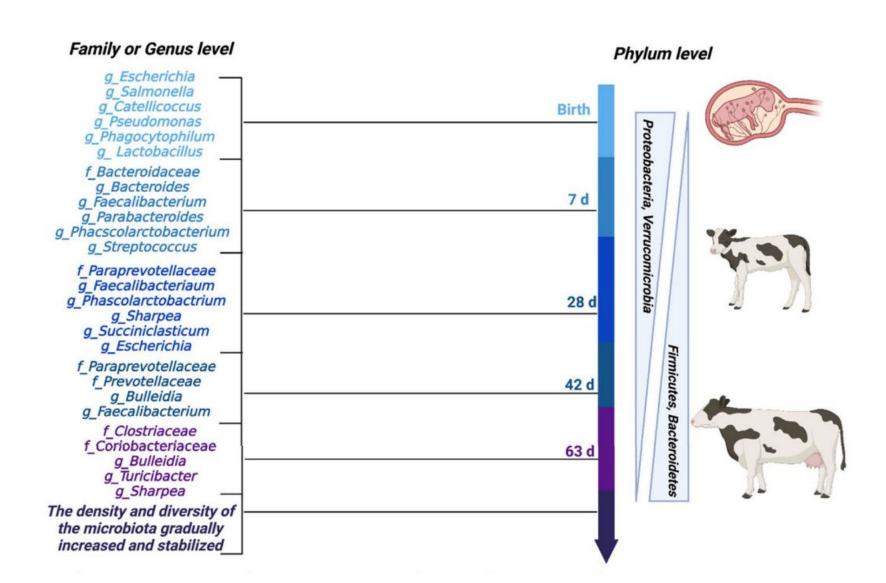

- Why is the dairy industry more aware of the issue?
- Selected evidence regarding
 - Welfare and behaviour
 - Health and disease transmission
 - Gut microbiome
 - Economics and yield

Why is the wider dairy industry interested in late cow calf separation?

 "Social contract" – calf separation one of the biggest concerns by consumers in many regions of the world

Sirovica et al., 2022 (USA)




Welfare and performance:

- Meagher et al. 2019: Review on welfare and performance
 - Separation within 24 hours reduces acute distress response of cows and calves
 - Late separation had long term behavioural benefits on calves (confidence, novel object)
 - Reduced saleable milk during sucking period, but not thereafter
 - Increased calf weight gain when separated late
- Mac et al., 2023: Measuring cow bahaviour at 1 and 100 day separation
 - 100 day separation led to more vocalisation and activity and more time spent eating and ruminating by cow and less time spent at the barrier

Review of effects on cow and calf health

- Beaver et al., (2019):
- Mastitis and calf scour: no effect or benefit of late separation
- Johne's disease: cow calf contact no significant risk factor.
- Clegg et al. (2009) estimate Johne's herd prevalence in Irish dairy herds
 - 19.6 % for dairy
 - 6.3 % for beef
- However, a Johne's monitoring and control programme should be in place
- □ no consistent evidence in support for early separation
- Benefit of "transition milk" (natural milk on day 2-3):
 - Higher growth rates, less diarrhoea due to immunological factors and stimulation of intestinal development (van Soest et al., 2022, Karger et al., 2021).
 - This can be fed
 - Natuarally (late separation)
 - Milked separately (management issue)
 - As transition milk replacer (cost and management)

Development of the gut microbiome in calves (Du et al. 2023)

Effect on gut microbiome: Beaver et al., 2021

- Late separated calves:
- more Lactobacillus sp. (some have been identified as improving weight gain and protecting against pathogens
 - more L-tryptophan biosynthesis

However: the early separated calves in the study were fed on waste milk, so effects could also be due to antibiotic residues.

Barth 2020: Effects on milk yield and composition

- Control (separated) versus
 - Short term sucking (2 x 15 min), before milkings
 - Night time sucking (6pm 5am), between milkings
 - 24 hour access (except during milking time)

Barth 2020 – milk recorded yield, calves with cows for 100 days

Table 1. Performance of cows without and with contact to their calves up to 100 d after calving depending on duration of contact and stage of lactation

Stage of lactation (DIM)	Control (No contact)	Treatments (=daily duration of dam-calf contact)		
		Short-time ^a (2 × 15 min)	Night-time (18:00-05:00)	Whole day (24 h)
≤100	28.7 ± 6.22	8.2 ± 4.08	16.3 ± 4.84	12.6 ± 6.72
>100 ≤200	23.1 ± 5.84	17.5 ± 5.29	24.5 ± 5.29	19.6 ± 4.80
>200 ≤305	18.0 ± 5.77	12.8 ± 3,46	22.2 ± 6.23	15.0 ± 3.78
N 100/200/300	89/83/75	15/15/13	18/18/14	54/50/41

Data presented as mean values ± so.

^aSuckled before each milking.

Barth 2020 – milk recorded yield, calves with cows for 100 days

Table 1. Performance of cows without and with contact to their calves up to 100 d after calving depending on duration of contact and stage of lactation

Stage of lactation (DIM)	Control (No contact)	Treatments (=daily duration of dam-calf contact)		
		Short-time ^a (2 × 15 min)	Night-time (18:00-05:00)	Whole day (24 h)
≤100	28.7 ± 6.22	8.2 ± 4.08	16.3 ± 4.84	12.6 ± 6.72
>100 ≤200	23.1 ± 5.84	17.5 ± 5.29	24.5 ± 5.29	19.6 ± 4.80
>200 ≤305	18.0 ± 5.77	12.8 ± 3.46	22.2 ± 6.23	15.0 ± 3.78
N 100/200/300	89/83/75	15/15/13	18/18/14	54/50/41

Data presented as mean values ± so.

^oSuckled before each milking.

Barth 2020 – milk recorded yield, calves with cows for 100 days

Table 1. Performance of cows without and with contact to their calves up to 100 d after calving depending on duration of contact and stage of lactation

Stage of lactation (DIM)	Control (No contact)	Treatments (=daily duration of dam-calf contact)		
		Short-time ^a (2 × 15 min)	Night-time (18:00-05:00)	Whole day (24 h)
≤100	28.7 ± 6.22	8.2 ± 4.08	16.3 ± 4.84	12.6 ± 6.72
>100 ≤200	23.1 ± 5.84	17.5 ± 5.29	24.5 ± 5.29	19.6 ± 4.80
>200 ≤305	18.0 ± 5.77	12.8 ± 3.46	22.2 ± 6.23	15.0 ± 3.78
N 100/200/300	89/83/75	15/15/13	18/18/14	54/50/41

Data presented as mean values ± so.

[&]quot;Suckled before each milking.

RVC

Economics – "Loss" of milk?

- Calves fed ad lib. can drink 10-12 litres per day
- Is this "lost" milk?
- Metabolic programming/epigenetics:
 - Calves fed ad lib give around 500 litres more milk in their first lacation (Kaske, 2010)
 - Every 100 g additional daily liveweight gain pre weaning results in about 100 litres of additional milk in the first lactation (Soberon et al., 2012).
- Lower milk yield after separation at 100 days less oxytocin when milked with machine, cows used to calves react with disturbed milk ejection (incomplete milk-out leading to negative feed back and less milk production (Barth 2020)

Further Info

https://literatur.thuenen.de/digbib_extern/dn065433.pdf

Cow-bonded calf rearing in dairy farming

A practical guide

